y

Introduction to Cocoa

Session 300

s

Introduction to Cocoa

Heather Hickman
Cocoa Evangelist

Introduction

* Cocoa is a powerful, full-featured, easy-to-use,
object-oriented framework for Mac OS X
development

* Rapid development and increased productivity

* Fastest way to full-featured applications
for Mac OS X

Cocoa

Classic Java Carbon Cocoa

OpenGL QuickTime

What You'll Learn

* What makes Cocoa unique

* What is this language called Objective-C?

* A quick stroll through the class hierarchy
and key concepts

* Resources for learning and becoming more
productive using Cocoa

y

CodeWarrior v8.0

Matt Henderson
Technical Lead Mac OS Tools
Metrowerks

CodeWarrior and Cocoa

* Build Cocoa-based Software with CodeWarrior
for Mac OS, v8.0

e Metrowerks C/C compiler has supported
Objective-C since 1998

* CoC

eWarrior I

* CoC

Interface Build

eWarrior I

DE 5.0 supports long file names
DE 5.0 integrates with

CI

s

CodeWarrior and Cocoa
Demonstration

Roadmap

003 Metrowerks Lunch Presentation Hall 2
Tues., 12:30pm
CodeWarrior Birds of a Feather Hall 2
Tues., 7:30pm
CodeWarrior Lounge Hilton Plaza Room
Open all week 8:00am—6:00pm
Metrowerks Booth Hall 1

Mon., 5:00pm-8:00pm

s

Project Builder

Mike Ferris
Manager, Project Builder Team

Project Builder—Cocoa Story

* Project Builder is made up of many “products”
e The application
* Frameworks
e Plug-in bundles
e Command-line tools, scripts
* Built by a total of 7 Project Builder projects
e Layered and split along lines of functionality

The Main Projects That Build PB

*pbx jamfiles: 5K lines of jam code

* toolsupport: 16K lines of Obj-C

* pbxbase: 70K lines of Obj-C (and a little C+ +)

pbxide: 140K lines of Obj-C

* pbxdocviewer: 8K lines of Obj-C
D

pbxprojectimporters: 3K lines of Obj-C

A Place to Stand

* NSWindowController

* NSDocument

* NSTextView / NSTextStorage

* NSTableView / NSOutlineView

* NSSplitView

* Key-value Coding / Property Lists

Roadmap

903 Exploring the Project Builder IDE Hall 2
Wed., 5:00pm

908 Delivering With Project Builder Hall 2
Fri., 2:00pm

902 AppleScript Studio Intro Civic

Wed., 3:30pm

iDVD2

Freddie Geier
Senior Director, New Media Engineering

Why Cocoa

s

S
QuickTime

Adrian Baerlocher
QuickTime Engineering

QuickTime Broadcaster

* Cocoa application using QuickTime

* Classes encapsulate QuickTime
functional groups

e Sequence Grabber

e Standard Compression
e Broadcast APIs

QuickTime Broadcaster

QuickTime Broadcaster

Source ———
[Widea | Network
? Enable Video Stream

Preset: = D5LfCable - High Ma

Panascnic DV

240 Height:

Campressor: | MPEG-4 Vide "oprions... "

Depth:

Source: DV Audio | 2 channels Quality:
Compression: f

2.5
Packetizer:
Ley frame every | 150

Source: Panasc ? Limit data rate to 150

Compression:
Packetizer: MPEG-4 Video RTP Payload: | MPEG-4 Vi

1 Packet dura
JCK |.i|'|'||:.'..,. 1/ mystream. '.:'F

Hide Details

Roadmap

600 The State of QuickTime in 2002

Room A2

Wed., 9:00am
601 Building QuickTime-Savvy Apps Room A2

Wed., 10:30am
Hands on With the QuickTime Room G

Engineers

Tues. thru Fri.
1:00pm-4:00pm

s

Introduction to Cocoa

Matthew Formica
Cocoa DTS Engineer

Full Featured

T “{“l m‘ﬁi [mmuhnmm |nn‘mnm
HIHIIII!IIIIIIIII mrnww% A“mlm i “ﬂ}'

«

The Cocoa Hierarchy

Foundation AppKit

* Non-GUI * GUI Widgets

* Basic Data * Text System
Structures

* Drawing

. .
Networking e Documents

* File System * Printing

* Scripting e And More!

* Accessibility
* And More!

Which Language to Use?

* Cocoa APIs are in Objective-C (ObjC) and Java

*You can plug your C and C+ + code into
ObjC as well

* Use the language that fits your needs
*We'll focus on ObjC today

Quick Overview of Objective-C

* Small superset of C
e ANSIC
e Some additional syntax
e A few additional types
* Dynamic object runtime

Quick Overview of Objective-C

*Valid Objective-C (ObjC) code!

inti;
for (i=0; i<5; I++)

{
}

printf(“Hello, World\n’’);

Weak Typing

* Objective-C determines dynamically at runtime
what class a given object is!

* Generic “id” object type can refer to an object
of any class

* Even typed objects can point to objects of other
classes at compile-time/runtime (only warnings
are produced)

Unique Messaging Syntax

For example...

[myObject doSomething];

I I
object message

What is happening here?
* [t's a message being sent, not a function being called
* Messaging nil is a no-op

* Watch out for misspellings of method names—or you
won't be able to respond to the right messages!

Unique Messaging Syntax

For example... with named parameters

[myObject doWithThis: otherObij];

I I I
object message parameter

[myObject doWithThis: object1l andThis: object2];

I I I I I
object Msg-partl1 parm1 Msg-part2 parm2

“doWithThis:” and “doWithThis:andThis:” are called selectors,
identifying which message will be sent to a receiver

Class Detfinitions

#import <Cocoa/Cocoa.h> //like #include with #pragma once

//MyClass inherits from NSObject
@interface MyClass : NSObject

{

int someValue;
BOOL someFlag;
NSString * theString;

}

+ (void) initializeSomething;
- (int) doSomething:(id)sender;

@end

Class Implementation

#import “MyClass.h”

@implementation MyClass
- (int) doSomething:(id)sender
{
someFlag=YES;
someValue=[self privateMethod]+[super doSomething:sender];

}

//methods don’t have to be declared in the header!
- (int) privateMethod { }
@end

More on ObjC

Categories

* A category let you add methods to an
existing class

* [nstance variables can not be added

* At runtime, the methods are just as much a

part of the class as any other method defined
on the class is

More on ObjC

Protocols

* Protocols declare methods not associated with a
class, but which a class, or classes, can choose to
implement to conform to the protocol

* [f you claim to conform to a protocol, and don't,
it’s a compile time error

* Protocols effectively group objects by
functionality, not class

More on ObjC

“Informal Protocols”

* They are categories, really
* No compiler error
* Help group functionality

s

Foundation Framework

Generally the “non-GUI” portion of Cocoa

* NSObject

* Memory Management
* Focus: NSString

* Focus: NSArray

* Focus: NSTask

NSObject

Root of the Cocoa Class Hierarchy

* Provides essential infrastructure methods like:
+ (id)alloc, - (id)init
- (BOOL) respondsToSelector:(SEL)aSelector
- (Class)class
+ (NSString *)description

Memory Management

In a nutshell

* Cocoa uses reference counting

* retain adds a reference, release decrements it,
and autorelease decrements it “later”

* The rules are simple:

 Only creation methods (alloc, copy, new)
return retained objects

 retain to keep an object around
* release when you are done with it

e When there are no references, the object is
deallocated

Memory Management

Example

* Managing the retain count

// We call alloc, so myString is implicitly retained
myString = [[NSString alloc] initWithFormat: @“%d”,100];

NSLog(myString);

// deallocate the memory for myString
[myString release];

Foundation Framework

Focus: NSString

* Opaque string class for use instead of char®
* “toll-free” bridged to CFStringRef

* Provides string manipulation methods and
full Unicode support

e Use the (@ “. .” construct to refer to a
constant string in-code

* Use NSMutableString if you are changing
a string as you go

Foundation Framework
Focus: NSString—Examples
NSString *someString = @“World!”’;
NSLog(@“Hello %@”,someString);

NSLog(@“The length of the string is %d”
[someString length]);

Foundation Framework

Focus: NSArray

* Provides optimized “expanding” array support

* Takes NSObject subclasses only—but multiple
types are allowed in one array

* Use with NSEnumerator Or objectAtindex:

* NSArrays retain their elements (and release
on element removal), so you do not have to

* Use NSMutableArray if you are changing
it aS you go

Foundation Framework

Focus: NSTask

* Launch other processes

* Interact through NSPipes with stdin,
stdout, stderr

* Wrap a command-line tool or shell script
in 2 Cocoa GUI

Foundation Framework

Focus: NSTask—Example

NSPipe *outPipe;
NSTask *task = [[NSTask alloc] init];

[task setLaunchPath:@”/bin/Is’’];
[task setArguments:[NSArray arrayWithObjects:@”-la”,
@“/usr/bin”,nill]];

outPipe = [[NSPipe alloc] init];
[task setStandardOutput:outPipe];
[task launch];

Foundation Framework

Focus: NSTask—Example

NSPipe *outPipe;
NSTask *task = [[NSTask alloc] init];

[task setLaunchPath:@”/bin/Is’’];
[task setArguments:[NSArray arrayWithObjects:@”-l1a”,
@“/usr/bin”,nil]];

outPipe = [[NSPipe alloc] init];
[task setStandardOutput:outPipe];
[task launch];

Foundation Framework

Focus: NSTask—Example

NSPipe *outPipe;
NSTask *task = [[NSTask alloc] init];

[task setLaunchPath:@”/bin/Is’’];
[task setArguments:[NSArray arrayWithObjects:@”-la”,
@“/usr/bin”,nill]];

outPipe = [[NSPipe alloc] init];
[task setStandardOutput:outPipe];
[task launch];

s

.
AppKit

The parts of your app you can see

* Model-View-Controller (MVC)
* Provides application-level services

* Powerful and sophisticated text
and drawing systems

* [nfrastructure for events
* Controls

AppKit

Organizing your application: Model-View-Controller

* A standard design pattern leveraged by Cocoa

Tl

The Model is your backend data

Tl

T'he View is your AppKit-based front end

qal

The Controller is your custom class that
ties the two together

* Enhances code factorization, encapsulation,
and reuse

AppKit

Application-level services

* Handled by NSApplication via the global
NSApp object

* NSApp does a lot of work for you
* Message NSApp to do application-level tasks

AppKit

Application-level services example

if ([NSApp isHidden])

[NSApp setApplicationlconimage:animage];
else

[INSApp hideOtherApplications:self];

AppKit

Text System

* A complete, international, rich text editing
solution in a drag-and-drop widget

* Automatic support for fonts, images, colors,
cut/copy/paste, spell checking, printing, rulers,
and more is built right in!

e NSTextView is the front end for a bunch of
interlocking text classes

* A lot of power, complexity, and customization
is there, but only if you need it

AppKit

Drawing

* NSBezierPath—lineToPoint, curveToPoint

* NSImage—drawAtPoint

* NSString, NSAttributedString—drawAtPoint

* NSColor, NSFont—set

* NSAffineTransform—set, concat

* NSGraphicsContext—graphicsPort

* CoreGraphics (Quartz) routines can also be used

o

AppKit

Event System

* NSApplication handles events

* Events get funneled to the focused NSResponder
subclass—the “first responder”

* The first responder can/will automatically change

AppKit

Event System—Part 2

* If the first responder doesn’t respond to an
event, the event is sent up the “responder chain”
until an object is found that responds

*You can send actions to the first responder via
“target/action” and targeting the first responder

* The dynamic nature of this system allows the
responder chain to reconfigure itself on the fly

AppKit

Controls

* Controls typically have an action—a message
that will be sent when the control is triggered

* Controls also have a targei—the recipient
object of the message

* NSButton, and NSMenultem for example

AppKit

Back to the first responder

* The target can be determined on the fly!
* Cut/Copy/Paste work this way
* Menu items autoenable/disable

AppKit

Focus: NSTableView

e Similar to Carbon’s DataBrowser control

* NSTableView does not hold its own data—
it asks its data source object for cell content

* NSTableView handles all the drawing

* Data source objects should adopt the
NSTableDataSource informal protocol

p
4

AppKit

Focus: NSTableView—NSTableDataSource Methods

* Two methods for a display-only table
-(int)numberOfRowsInTableView:(NSTableView *)tableView
-(id)tableView:(NSTableView *)tableView

objectValueForTableColumn:(NSTableColumn *)tableColumn
row:(int)row;

AppKit

Focus: NSTableView—NSTableDataSource Methods

* One more method to make the table editable

-(void)tableView:(NSTableView *)tableView
setObjectValue:(id)object
forTableColumn:(NSTableColumn *)tableColumn
row:(int)row;

y

-
Demo

MP3 Player

Matthew Formica
Cocoa DTS Engineer

s

Documentation

Matt Rollefson
Technical Publications

Documentation

Cocoa

* [ots of content

* Reference API
complete for 10.1

e 8 *More conceptual
Referex}ce Documentation mat€r lal on thG Way

Programming Topics

Documentation > Cocoa ."
developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

Documentation Access

r h_

Category: @interface NSString

¥ [h] N3Rang
Function:

F (h] Nastring. b
Type: t
Class: @inter

Category: @®intert

v hl

Category: &inte

StringDrawin

Category: @interf

M5String (CH

NSString

Inherits from:

Conforms to:

DATION_E

gned NSStringkr
NSString : NSO

M55tringPhoard Type

StringPathExtensions)

JRT NSString "NSStringFromBRan

ce N5SString (N55tring

Default Find O Find

De " Replace

Contains Options

MN5Range rq

apying, -"-JSE_ljl‘_!lr‘:l;‘_J >

Announcing . .

Roadmap

301 Cocoa: What’s New Civic
Tues., 9:00am
302 Cocoa API Techniques: Hall 2
Understanding, leveraging, and extending ~ Thurs., 9:00am
303 Cocoa Scripting: Room A2
Scripting overview and recent changes Thurs., 10:30am
304 Cocoa Controls and Accessibility: Room A2

Overview of controls; new Accessibility APIs Thurs., 5:00pm

Roadmap (Cont.)

305 Cocoa Drawing: Hall 2

2D graphics in Cocoa: Images, bezier paths, . . - Fri., 10:30am
306 Cocoa Text: Room J
In-depth overview of the text system Fri., 2:00pm
FF016 Cocoa Feedback Forum: Room A1
Comments and suggestions for Cocoa Fri., 5:00pm

Who to Contact

Heather Hickman

Cocoa Evangelist
hhickman@apple.com

i

http://developer.apple.com/wwdc2002/urls.html .

For More Information

* O'Reilly “Learning Cocoa” and “Building Cocoa
Applications: A Step-by-Step Guide”

* Cocoa Developer Documentation

http:/developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

* Apple Customer Training
http://train.apple.com/

& WWDC2002

& WWDC2002

& WWDC2002

